Wednesday, February 1, 2017

What the Melanoma Big Dogs are working on in 2017!!!

Immunotherapy!  Targeted therapy!  TIL!  CARs!  Intratumoral therapies!  Here we go!!!!

Novel Checkpoints and Cosignaling Molecules in Cancer Immunotherapy.  Giuroiu, Weber. Cancer J. 2017 Jan/Feb.
The recent demonstration of the antitumor efficacy of checkpoint protein inhibition has resulted in the approval of blocking antibodies against the programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway in multiple different histologic findings. Therapeutic successes with PD-1/PD-L1 antibodies in melanoma and lung cancer have been followed by approvals in bladder, renal, and head and neck cancers and Hodgkin lymphoma, with others undoubtedly to come. However, PD-1 is only one of many checkpoints and agonistic regulatory molecules expressed on T cells by which maintenance of the balance between costimulatory and coinhibitory signaling pathways is perturbed in cancer. The manipulation of many of these molecules in cancer patients might be associated with clinical benefit. The majority of the T-cell cosignaling receptors belong to either the immunoglobulin superfamily or the tumor necrosis factor receptor superfamily. A total of 29 immunoglobulin superfamily and 26 tumor necrosis factor receptor superfamily cosignaling receptors have been identified that are expressed on T cells, providing fertile ground for development of inhibitory or agonistic antibodies and small molecules as cancer therapeutics. In the current work, we focus on some of the most promising new checkpoints and agonistic or cosignaling molecules that are in early clinical development as single agents or in combinations with PD-1/PD-L1, cytotoxic T-lymphocyte-associated protein 4 blockade, or chemotherapy with an emphasis on those that have reached the clinic and on important targets that are in late preclinical development.

Novel Targeted Therapies for Metastatic Melanoma.  Iams, Sosman, Chandra.  Cancer J.  2017 Jan/Feb.

Oncogene-targeted therapy is a major component of precision oncology, and although patients with metastatic melanoma have experienced improved outcomes with this strategy, there are a number of potential therapeutic targets currently under study that may further increase the drug armamentarium for this patient population. In this review, we discuss the landscape of targeted therapies for patients with advanced melanoma, focusing on oncogene mutation-specific targets. In patients with typical BRAF V600-mutant melanoma, combination BRAF and MEK inhibition has surpassed outcomes compared with monotherapy with BRAF or MEK inhibition alone, and current strategies seek to address inevitable resistance mechanisms. For patients with NRAS-mutant melanoma, MEK inhibitor monotherapy and combined MEK and CDK4/6 inhibition are burgeoning strategies; for patients with KIT-mutant melanoma, tyrosine kinase inhibition is being leveraged, and for NF-1-mutant melanoma, mTOR and MEK inhibition is being actively evaluated. In patients with atypical, non-V600 BRAF-mutant melanoma, MEK inhibitor monotherapy is the potential novel targeted approach on the horizon. For advanced uveal melanoma, novel targets such as IMCgp100 and glembatumumab have shown activity in early studies. We review additional strategies that remain in the preclinical and early clinical pipeline, so there is much hope for the future of targeted agents for distinct molecular cohorts of patients with advanced melanoma.

Adoptive Cell Therapy for Metastatic Melanoma.  Merhavi-Shoham, Itzhaki, Markel, et al. Cancer J. 2017 Jan/Feb.  

Adoptive cell therapy (ACT) of tumor-infiltrating lymphocytes (TILs) is a powerful form of immunotherapy by inducing durable complete responses that significantly extend the survival of melanoma patients. Mutation-derived neoantigens were recently identified as key factors for tumor recognition and rejection by TILs. The isolation of T-cell receptor (TCR) genes directed against neoantigens and their retransduction into peripheral T cells may provide a new form of ACT.  Genetic modifications of T cells with chimeric antigen receptors (CARs) have demonstrated remarkable clinical results in hematologic malignancies, but are so far less effective in solid tumors. Only very limited reports exist in melanoma. Progress in CAR T-cell engineering, including neutralization of inhibitory signals or additional safety switches, may open opportunities also in melanoma.We review clinical results and latest developments of adoptive therapies with TILs, T-cell receptor, and CAR-modified T cells and discuss future directions for the treatment of melanoma.

Intratumoral Approaches for the Treatment of Melanoma.  Bommareddy, Silk, Kaufman.  Cancer J. 2017 Jan/Feb.

There have been significant advances in the immunotherapy of melanoma over the last decade. The tumor microenvironment is now known to promote an immune-suppressive milieu that can block effective immune-mediated tumor rejection. Several novel strategies designed to overcome local immunosuppression hold promise for treatment of melanoma and other cancers. These approaches include oncolytic viruses, plasmid DNA delivery, Toll-like receptor agonists, inflammatory dyes, cytokines, checkpoint inhibitors, immunomodulatory agents, and host and pathogenic cell-based vectors. In addition, there are several novel methods for local drug delivery, including direct injection, image-guided, electroporation, and nanodelivery techniques under study. The approval of talimogene laherparepvec (Imlygic), an attenuated, recombinant oncolytic herpesvirus, for melanoma treatment is the first intratumoral agent to receive regulatory approval for the treatment of patients with melanoma. This review will focus on the rationale for intratumoral treatment in melanoma, describe the clinical and safety data for some of the agents in clinical development, and provide a perspective for future clinical investigation with intratumoral approaches. Melanoma has been a paradigm tumor for progress in targeted therapy and immunotherapy and will likely also be the tumor to establish the therapeutic role of intratumoral treatment for cancer.

Sounds good!  I like a multi-faceted approach.  Now!  Let's make it so!  Double time!!!! - c

No comments:

Post a Comment